

www.iaset.us edi tor@iaset.us

PREDICTION OF SOFTWARE MAINTENANCE EFFORT ON THE BASIS OF

UNIVARIATE APPROACH WITH SUPPORT VECTOR MACHINE

DIMPLE CHANDRA & PARTIBHA YADAV

Department of Computer Science and Engineering, PDM College of Engineering for Women,

Bahadurgarh, Haryana, India

ABSTRACT

 The connection among object oriented metrics and software maintenance effort is complex and non -linear.

Therefore, there is wide research area in development and application of sophisticated techniques which can be used to

construct models for predicting software maintenance effort. The aim of this paper is to evaluate Support Vector Machine

for Regression in software maintainability prediction using object-oriented metrics to construct models for prediction of

Software Maintenance Effort. Support Vector Machine has already proved its importance in Banking Sector and in other

areas also. We are using SVM with Radial kernel function. It is observed that Support Vector Machine can be used for

constructing accurate models for prediction of software maintenance effort which gives most accurate models for

prediction. We are using maintenance effort data of software product QUES (Quality Evaluation System) in this study.

The dependent variable in our study is maintenance effort. The independent variables are eight Object Oriented metrics.

We will verify the dataset by Univariate performance basis. The results show that the MARE of MPC in QUES Dataset is

0.644, while other metrics have larger MARE value. Thus we found that Univariate approach of evaluating the OO Metrics

is useful in constructing software quality model.

KEYWORDS: Kernels Function, Object, Oriented Metric, Regression, Software quality, Support Vector Machine and

Univariate

INTRODUCTION

 Currently software quality is a major factor of concern. The growing research activity in software quality leads to

innovation of novel practice, to predict its attributes. There are several empirical studies which show that there is a stron g

relationship between Object Oriented (OO) metrics and OO software quality attributes such fault proneness

(V. Basili, L. Briand, W. Melo), maintenance effort (W. Li and S. Henry) and testability (S. R. Chidamber and

C. F. Kemerer). Maintainability is an important quality attribute and a difficu lt concept as it involves a number of

measurements. OO metrics are used in quality estimation. However quality estimation means estimating maintainability or

reliability of software. Software reliability is a valuable ingredient to make the system work properly without a fail

(M. R. Lyu). As the OO system uses a huge amount of small methods, it is time consuming, error prone and has a

distinctive maintenance problem (R. E. Johnson and B. Foote). In ou r knowledge there are no significant research studies

showing application Support Vector Machine with Kernel functions. As the traditional computers are not excellent to

interact because of the noised data, immense parallelism, fau lt tolerant, and failure to adapt to certain circumstance, so

Support Vector Machine provides a better option for handling software quality. The application of Support Vector Machine

for software quality prediction using object-oriented metrics is focused in this paper.

International Journal of Computer Science

and Engineering (IJCSE)
ISSN(P): 2278-9960; ISSN(E): 2278-9979
Vol. 3, Issue 3, May 2014, 83-90

© IASET

84 Dimple Chandra & Partibha Yadav

Impact Factor (JCC): 3.1323 Index Copernicus Value (ICV): 3.0

Support Vector Machine

 SVM (Support Vector Machines) are a useful technique for data classification and regression. SVM is a learning

system using a high dimensional feature space. It yields prediction functions that are expanded on a subset of support

vectors.

 SVM can generalize complicated gray level structures with only a very few support vectors. SVM is a large

margin linear classifier.

 One interesting property of support vector machines and other kernel-based systems is that, once a valid kernel

function has been selected, one can practically work in spaces of any dimension without any significant additional

computational cost, since feature mapping is never effectively performed. In fact, one does not even need to know which

features are being used.

 Another advantage of SVMs and kernel methods is that one can design and use a kernel for a part icular prob lem

that could be applied directly to the data without the need for a feature extract ion process

Given a Set of Data Points

 With a scale transformation on both w and b, the above is equivalent to

 The margin width is:

Figure 1: Large Margin Hyperplane

 The kernel trick can be applied to any algorithm that solely depends on the dot product between two vectors.

Wherever a dot product is used, it is rep laced by a kernel function. When done, linear algorithms are transformed into a

non-linear algorithm.

Prediction of Software Maintenance Effort on the Basis of Univariate Approach with Support Vector Machine 85

www.iaset.us edi tor@iaset.us

SVM Regression

 SVMs can also be applied to regression problems by the introduction of an alternative loss function

(Nello Cristianin i and John Shawe-Taylor), (A. J. Smola). The loss function must be modified to include a d istance

measure. The regression can be linear and nonlinear. Linear models mainly consist of the following loss functions,

e-intensive loss functions, quadratic and Huber loss function.

 Instead of minimizing the observed training error, Support Vector Regression (SVR) attempts to min imize the

generalization error bound so as to achieve generalized performance. The idea of SVR is b ased on the computation of a

linear regression function in a high dimensional feature space where the input data are mapped via a nonlinear function

(Debasish Basak, Srimanta Pal and Dipak Chandra Patranabis).

 By using different loss function called the ε-insensitive loss function,

 0},)(,0max{)(

xfyxfy

 SVMs can also perform regression. This loss function ignores errors that are smaller than a certain threshold ε > 0

thus creating a tube around the true output. The primal becomes:

iii

m

i

ii

ybwx

m

c
wwt

)),((

)(
2

1
),(

0

*2

0

)),((

*

*

i

iii bwxy

 We can estimate the accuracy of SVM regression by computing the scale parameter of a Laplacian distribution on

the residuals ζ = y − f(x), where f(x) is the estimated decision function (Lin and Weng 2004).

The Kernel Trick

 The kernel trick can be applied to any algorithm that solely depends on the dot product between two vectors.

Wherever a dot product is used, it is rep laced by a kernel function. When done, linear algorithms are transformed in to a

non-linear algorithm.

 The RBF kernel is one of the most popular kernel functions. It adds a “bump” around each data point:

n

i

ii bxxxf
1

2
)exp()(

 is the kernel parameter. The choice of best value is an important factor for the performance of the SVM.

 We have chosen RBF kernel fo r my research in this paper because in many studies RBF kernel found to be best

kernel among all kenels (Jae H. Min, Young-Chan Lee).

86 Dimple Chandra & Partibha Yadav

Impact Factor (JCC): 3.1323 Index Copernicus Value (ICV): 3.0

Empirical Data

 The commercial software product QUES data are used in this research paper, which is presented in Li and Henry

Paper (W. Li and S. Henry). The number of lines changed per class is termed as Maintenance Effort. Addition or a delet ion

could be a line change. A change of the content of a line is counted as a deletion followed by an addition.

This measurement is used in this study to estimate the maintenance effort of the Object Oriented systems. QUES contains

71 classes.

Dependent and Independent Variables

 The continuous dependent variable in our study is testing effort. The goal of our study is to empirically exp lore

the relationship between OO metrics and testing effort at the class level. We use ANN to predict testing effort per class.

Testing effort is defined as lines of code changed or added throughput the life cycle of the defect per class.

The independent variables are OO metrics chosen for this study. The metrics selected in this study are summar ized in

Table 1.

Experimental Methodology

 The performance is calculated on the basis of Univariate performance of each software metric. This is because,

the effect of each software metric can be observed individually and which software metric is effective fo r calcu lating the

maintenance effort of the software. Here in this paper we are using commercial dataset QUES. We are using SVM with

Radial kernel for the regression value calculation of each metric and calculating MARE, MRE, R-Values and P-Values for

each OO Metric.

Maintenance Effort Modeling Using SVM

 For maintenance effort we are calculating MARE, MRE, R-Value and P-Value.

Mean Abs olute Relative Error (MARE) (G. Finn ie and G. Witting) - This is the preferred measure used by

software engineering researchers and is given as

 MARE =
N

actual

actualpredictedabsN

i

1

)(

 Where predicted is predicted output which is calculated by using SVM, actual is the actual values available in the

Dataset and N is the no. of observations.

Mean Relative Error (MRE) (G. Finnie and G. W itting) – This measure is used to estimate whether models are

biased and tend to overestimate or underestimate and is calcu lated as follows:

 MRE =
N

actualpredictedabs
N

i

1

)(

 A large positive MRE would suggest that the model over estimates the number of lines changed per class, whereas

a large negative value will indicate the reverse.

Prediction of Software Maintenance Effort on the Basis of Univariate Approach with Support Vector Machine 87

www.iaset.us edi tor@iaset.us

R-Value

 R-Value is the Correlation coefficient between the outputs and targets. It is a measure of how well the variation in

the output is explained by the targets. If this number is equal to 1, then there is perfect correlation between targets and

outputs.

P-Values

 P-values are used for testing the hypothesis of no correlation. Each p -value is the probability of getting a

correlation as large as the observed value by random chance, when the true correlation is zero. If p is small, say less than

0.05, then the correlation R is significant”.

OO Software Metric

 The object oriented metrics used by Li-Henry in their research paper are abbreviated as follows:

RFC

 Response for Class the RFC metric measures the cardinality of the response set of a class. One may intuit that the

larger the RFC metric, the harder it is to maintain the class since calling a large number of methods in response to a

message makes tracing an error d ifficult. The calcu lation of RFC is number of local methods and number of methods

called by local methods; ranging from 0 to N; where N is a positive integer.

NOM

 Number of Methods NOM in a class, since the local methods in a class constitute the interface increment of the

class, NOM serves the best as an interface metric. NOM is the number of local methods. The more methods a class has, the

more complex the class’ interface has incremented.

WMC

 Weighted Method Complexity WMC metric measures the static complexity of all the methods. The more control flows a

class’ methods have, the harder it is to understand them, thus the harder it is to maintain them. The WMC is calculated as

the sum of McCabe’s cyclomatic complexity of each local method; ranging from 0 to N; where N is a positive integer.

DAC

 Data Abstraction Coupling A class can be viewed as an implementation of an ADT (Abstract Data Type).

The metric which measures the coupling complexity caused by ADTs is DAC (Data Abstractio n Coupling) and is the

number of ADTs defined in a class.

MPC

 Message Passing Coupling MPC is used to measure the complexity of message passing among classes in the

research. MPC is number of send-statements defined in a class. The number of messages sent out from a class may indicate

how dependent the implementation of the local methods is upon the methods in other classes.

LCOM

 Lack of Cohesion of Methods the LCOM metric measures the lack of cohesion of a class. One may intuit that the

88 Dimple Chandra & Partibha Yadav

Impact Factor (JCC): 3.1323 Index Copernicus Value (ICV): 3.0

larger the metric, the harder it is to maintain the class. The calculation of LCOM is number of disjoint sets of local

methods; no two sets intersect; any two methods in the same set share at least one local instance variable; ranging from

0 to N; where Nis a positive integer.

NOC

 Number of Children the NOC metric measures the number of direct children a class has. One may intuit that the

larger the NOC metric, the harder it is to maintain the class. The calculation of NOC is number of d irect sub-classes;

ranging from 0 to N; where N is a positive integer.

DIT

 Depth in the Inheritance Tree the DIT metric measures the position of a class in the inheritance hierarchy. One

may hypothesize that the larger the DIT metric, the harder it is to maintain the class. The calculation of the DIT metric is

the level number for a class in the inheritance hierarchy. The root class DIT is zero, DIT ranges from 0 to N; where N is a

positive integer.

Table 1: OO S oftware Metric

S. No Metric OO Attribute

1 Response for a Class (RFC) Class

2 Number of Methods per Class (NOM) Class

3 Weighted Methods per Class (WMC) Class

4 Data Abstraction Coupling (DAC) Coupling

5 Message Passing Coupling (MPC) Coupling

6 Lack of Cohesion (LCOM) Cohesion

7 15 Number of Children (NOC) Inheritance

8 Depth of Inheritance (DIT) Inheritance

Univariate Results

 Here to observe the impact of object oriented metrics in Maintenance measurement, we have chosen each metric

to calculate its parameters and see which metric is important for the Maintenance measurement of the software. Here in

this paper for each metric I have calculated MARE, MRE, R-Value and P-Values. And on the basis of these results we can

decide which metric is more important for Maintenance measurement.

Observations

 In QUES Dataset the NOC Metric is completely zero so we are leaving this metric for the calcu lation.

 Univariate Response of each OO Metric in Ascending Order to MARE by Using Support Vector Machine with

Radial Kernel Function of QUES Dataset .

Table 2: QUES Dataset

Metric MARE MRE R-Value P-Value

MPC 0.644 31.214 0.355 0.0024

RFC 0.673 29.907 0.3129 0.0079

WMC 0.731 28.471 0.4099 0.0004

DAC 0.813 32.450 -0.1553 0.196

DIT 0.836 33.207 -0.3375 0.004

NOM 0.844 31.907 0.0349 0.7726

LCOM 0.868 32.732 -0.1584 0.1869

Prediction of Software Maintenance Effort on the Basis of Univariate Approach with Support Vector Machine 89

www.iaset.us edi tor@iaset.us

Graphical Representation

 Graphical representation of the results is shown by a bar chart in Figure 2.

CONCLUSIONS

 In this work we evaluate and compare different Object Oriented Metrics for pred iction of software maintenance

effort of commercial software systems. The graph in Figure 2 shows the MARE obtained with different Object Oriented

Metrics to compare their accuracy for prediction of software maintenance effort. The results show that the MARE of MPC

in QUES Dataset is 0.644, while other metrics have larger MARE value. It is concluded that the results of Univariate are

the best followed by other approaches. The MARE of QUES are in ascending order, according to it we can use them for

calculating maintenance effort measurement. Hence it is concluded that the Univariate approach can be successfully used

for the prediction of software maintenance effort. However, our results need to be generalized by conducting similar

studies on maintenance data of software system.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

MPC RFC WMC DAC DIT NOM LCOM

MARE

R-Value

P-Value

Figure 2: QUES Dataset Res ponse on Univariate Approach

REFERENCES

1. V. Basili, L. Briand, W. Melo, “A Validation of Object- Oriented Design Metrics as Quality Indicators”,

IEEE Transactions on Software Engineering, vol. 22 no.10, pp. 751-761, 1996

2. W. Li and S. Henry, “Object Oriented Metrics that Predict Maintainability”, Journal of Systems and Software,

vol. 23 no.2, pp.111-122, 1993.

3. S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object Oriented Design,” IEEE Transactions on

Software Engineering, vol. 20, pp 476- 493, 1994.

4. M. R. Lyu, “Handbook of software Reliability Engineering”, IEEE Computer Society Press, McGraw Hill, 1996.

5. R. E. Johnson and B. Foote, “Designing Reusable Classes. Journal of Object-Oriented Programming”, vol. 1,

no. 2, pp. 22-35, 1988.

6. Debasish Basak, Srimanta Pal and Dipak Chandra Patranabis, “Support Vector Regression”, Neural Information

Processing – Letters and Reviews, vol. 11, No. 10, October 2007.

7. Lin CJ, Weng RC (2004). “Probabilistic Predictions for Support Vector Regression.”

90 Dimple Chandra & Partibha Yadav

Impact Factor (JCC): 3.1323 Index Copernicus Value (ICV): 3.0

8. G. Finnie and G. Witting, “AI Tools for Software Development Effort Estimation”, International Conference on

Software Engineering: Education and practice, 1996.

9. B. Henderson-sellers, “Object-Oriented Metrics, Measures of Complexity”. Prentice Hall, 1996.

10. www.mathworks.com.

11. Nello Cristianini and John Shawe-Taylor, “An Introduction to Support Vector Machines and Other Kernel-based

Learn ing Methods”, Cambridge University Press, 2000.

12. A. J. Smola. “Regression estimat ion with support vector learning machines”. Master’s thesis, Technische

Universit¨at M¨unchen, 1996.

13. Jae H. Min, Young-Chan Lee, “Bankruptcy prediction using support vector machine with optimal choice of kernel

function parameters”, Elsevier, Expert Systems with Applicat ions 28 (2005) 603–614.

